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Turbulent forced convection in a helicoidal pipe 
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A~trac~Fully developed turbulent convective heat transfer in a circular cross-section helicoidal pipe 
with finite pitch is numerically studied. The k-e model is used to model the turbulent behavior. The time 
averaged momentum and energy equations are derived in the helicoidal coordinate system. The results 
indicate that the temperature distribution in the cross-section will be asymmetric as the pitch of the coil 
increases. Unlike that in laminar flow, an increase in the Prandtl number will reduce the torsion effect on 
the heat transfer in a helicoidal pipe. The results also indicate that the pitch effect will be enhanced as the 

flow rate increases. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Turbulent heat transfer in coiled pipes is commonly 
encountered in the design of compact heat exchangers, 
evaporators, combustors, and condensors used in the 
food, pharmaceutical, power and chemical industries. 
The convective turbulent heat transfer in coiled pipes 
has been experimentally studied by Jeschke [1], 
Woschni [2], and Rogers and Mayhew [3] for water 
and air. Petukhov and Popov [4], Schmidt [5] and 
Gnielinski [6] developed the correlation equations 
based on the test, and the derivation of the data from 
the correlation equation was less than + 15%. Mori 
and Nakayama [7] applied boundary layer idealization 
to predict the temperature profile and heat transfer 
coefficient for the turbulent flow. Their calculated 
result was confirmed by their own experimental result. 

To distinguish the differences in coiled pipes, the 
coiled pipe with a negligible pitch is usually termed as 
a toroidal pipe, and the coiled pipe with considerable 
pitch is designated as a helicoidal pipe. Although 
numerous studies have been conducted for toroidal 
pipe flow, only a limited number of papers has been 
published for the flow and heat transfer in a helicoidal 
pipe (the coiled pipe with considerable pitch). It is well 
known that the pitch of the coiled pipe will create an 
additional force--torsion--on the flow. The major 
obstacle for progress in this area of study is due mainly 
to the fact that the axial velocity in the helicoidal pipe 
is not orthogonal to the radial and tangential velocities 
in a helicoidal coordinate system. Wang [8] first intro- 
duced the nonorthogonal helicoidal coordinate to 
study the secondary flow in a helicoidal pipe. Murata 
et al. [9] simplified the Navier-Stokes equations by 
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assuming a small curvature in a nonorthogonal coor- 
dinate system. Germano [10, 11] introduced a trans- 
formation to render the nonorthogonal coordinate 
system to an orthogonal one, and found that the effect 
of torsion on the secondary flow is second-order. Kao 
[12] used Germano's coordinate system to study the 
helicoidal pipe flow in a substantial range of Dean 
numbers using both perturbation and numerical 
methods. Recently, Xie [13], Tuttle [14], Chen and 
Jan [15], and Liu [16] tried to resolve the controversy 
between these researchers by linking Wang's coor- 
dinate system with Germano's coordinate system. 
Kao [12] and Yang et al. [17] studied the convective 
heat transfer in the helicoidal pipe with a finite pitch. 
However, all of these studies of the torsion effect on 
the flow and heat transfer in a helicoidal pipe were 
limited in the laminar flow region. 

The above survey indicates that the theoretical and 
numerical studies on the forced convective heat trans- 
fer in the helicoidal pipe are limited in either the lami- 
nar region or the turbulent region with zero pitch. 
The objective of this study is to explore the effects 
of torsion on the fully developed turbulent forced 
convection in a helicoidal pipe with a finite pitch. In 
this study, the momentum and energy equations were 
derived in the helicoidal coordinate system as 
employed by Germano for laminar flow. The k-e tur- 
bulent model, which has been successfully used in the 
toroidal pipe, has been applied to predict the turbulent 
viscosity. In the following sections, the governing 
equations in the helicoidal coordinates and the 
numerical procedures will be discussed, followed by a 
discussion of the results and conclusions. 

2. THE GOVERNING EQUATIONS 

The helicoidal coordinate system used by Germano 
[10] for laminar flow is applied in this study. In Fig. 

2015 



2016 G. YANG and M. A. EBADIAN 

NOMENCLATURE 

a pipe diameter [m] 
h pitch [m] 
Ci, C> C, constant 
De Dean number 
G turbulent kinetic energy generation 

[m 2 s '] 
k kinetic energy [m 2 s ~] 
Pr Prandtl number 
Pr, turbulent Prandtl number 
p pressure [Nm :] 
R radius of the coil [m] 
Re Reynolds number 
r dimensionless radial direction 

coordinate [m] 
s dimensional axial coordinate [m] 
T temperature [C]  
u, c, w velocity components [ms ~] 
V velocity [ms ~] 
Wb dimensionless average axial velocity 

[ms '] 
y~ distance from the wall [m]. 

Greek symbols 
angle 

F turbulent diffusivity 
,5 dimensionless curvature, xa 

0 
K 

2 
/t 

Gk, G~ 
T 
q~ 

0 
O) 

turbulent kinetic energy dissipation 
[m e s ~] 
angle 
constant 
dimensionless torsion try, ~] 
dynamic viscosity [kg m ~ s ~] 
kinematic viscosity [m -~ s ~] 
density [kg m ~] 
constants 
torsion : shear stress [m 2 s -~] 
general function 
angle 
function. 

Subscripts 
b bulk 
k turbulent kinetic energy 
1 laminar 
p near boundary node 
r radial direction 
s axial direction 
T temperature 
t turbulent 
c turbulent kinetic energy dissipation 

tangential direction. 

1, s indicates the dimensional axial coordinate, and 2a 
is the diameter of the circular cylinder in which s is 
coiled. R is the radius of the circular pipe, while r 
and ~, = 0+q$ are the coordinates in the radial and 
tangential directions, and b is the pitch of the heli- 
coidal pipe. u, v and w are velocities in the tangential. 
radial and axial directions, respectively. The gov- 
erning equations for fully developed flow can be 
written as 

Continuity equation 

r ~  l ~ u  &~ " I P-r '~w l ~ ,  + + +&9 ucosO+t,  s i n l p - , ~ ,  = O. 
r 

( I )  

~C 

s*] 
'B 

m b  outer 

wGIl !~ 

~1~ - 2R - - 4 ~  C C Sectior, 

Fig. 1. The schematic of a helicoidal coordinate system. 

Momentum equation 

[(;(uu) I ~(ruv)) 

- r3¢  +p`swco w c o s ¢ + , i  

m, I ~ 8w7 , , . c o s  + ,, s i n  

1 ? ( r,,> 
+ r?,r(rrn,)+ rSO(r,~,)+ ~ 
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& 
x (r,¢ cos 0 + z~ sin O - r~ sin ~O) - 6o2 g~ (rrs) 

/~?(uw) 1 a(rvw)\ @ 
P k ~ -  + r~- r  ) = -03~-s + 2pw603 

[ucosO+vsinO-2~¢]+ !~('co3 

lO 
+ r ~r (rZrs) + 2&°w(r°~ cos #J + z~ sin ¢). 

Energy equation 

[ I  a(ur) + 1 ( r v r ) ]  

"Lr - r --rJ 
F 1 O2T OaT larl  

--- n -L7  + ar + r 

-p03W~-s-- p 60 ucos~+ t ,  s i n 0 - 2 ~  

~T F /10T +,w036   +H03% coso 
,   2'' +  rcosO5O] + ?--rrS 'nO)+PJt&03k~5 

(3) 

(4) 

(s) 

Kinetic energy equation 

Da(uk)  l (rvk)]_G[laak a2k 

°L-rTO +r Or J- a~Lr2OC + Or ~ 

. ~3w 

+ pw0362 ~ #t[ /1 8k 
+ ~L036tr ~ c°s 0 + ~kr sin 0 ) 

2 2 2 /~2k  8k\l 
+p2 6 031~-~S +03&cos@~)J+G-pe. (6) 

Kinetic energy dissipation equation 

PL; ~ -  r a r  J ~ L r2 ao 2 + ar - 2  

+ 1 ~?e .8w 
r ~ ] - Pe[ 603( u cos ¢ + v sin O - .t ~ ) 1 

& F /1 & & \ ~- pW0362 ~ -~- #t --  L 0 3 6 b ~  c ° s o +  o-~ 8r s ine ) 
& ~2 2 2//~2e _F 036r cos ~k ~ ) ] +  C e e} 

(7) 

In equations (2)~4), z~ represents the shear stress, 
which can be expressed in terms of velocity gradients 
and fluid viscosity 

/1 Ou 
rq,¢' = 2("' +/~t)~r ~ + ~) 

0 'r~ = 2(p, + Pt) 8rr 

/ 2 (?" = 2(/~, + ~ ' ) k -  e36 2 ~ + 036u cos @ + 036v sin 0 )  rss 

r,r = (#~ + #,) 8r - 036w sin 0 -  0362 

((?w . ~gv\ 
rr. = (#1+~,) ~ r  - 0 3 6 w s i n 0 - 0 3 0 2 ~ )  

( . o~.Ou r~lgw-036wc°s@) r~,~ = (, . ,+.,)  -o6~,.  G + . (8) 
/ 

In equations (5)-(7), Fi represents the diffusion 
coefficients of energy, the k and e equations : 

#l + # ,  
FT = Pr~l Prt 

#t 
F k = IIi + FZ 

#t 
F~: = ]~1-~- FZ. (9) 

In the equations, & and 2 represent the dimensionless 
curvature and torsion, respectively, and 03 is a dimen- 
sionless function ; they are defined as 

aR ,~- 
R2 -t- b 2 

b 
R 

1 
03 - ( 1 0 )  

1 +&sin~O 

The turbulent viscosity/~, is modeled by : 

k 2 
#, = C,p--, (11) 

8 

and the constants recommended by Launder and Spal- 
ding [1 8] were used in this study 

C ,=0 .09 ,  C, =1.47, 

C2=  1.92, a k =  1.0, G =  1.3, Pro=l).9. 

The generation terms in the k and e equations were 
calculated by G = (~" V)V : 

{ [(lOu)Z+{v-~z+(~v~Z+2v(?u 
G= #t 2 r ~  \rJ \Or] rZO0 
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+ o2[6 o(u cos @ + v sin @ --)o - 

+ (12) 

The wall function method has been used to specify 
the boundary conditions at the solid wall region. For  
radial velocity v the non-slip boundary condition was 
exposed. For  the velocities in the tangential and axial 
directions, u and w. 

y 4 I~ u velocit.~ 

, ,  - I " '  
,u, L v J ln  ( E v  + ),",', ! ,~ p 

u 7  w velocity 

It 3 ' ~< 11.5 
(1 3) =) #," ) 

(2.51uiqY+) ~ > 11.5 

For  the energy equatiom the K, for the mode next to 
the wall can be written as 

i #/P,., 

F I = <: U I  ," . .  

[?r,[2.51~q~C + ) + PI 

where 

ii ' ~< 11.5 (14) 
- > 1 1 . 5  

Pr \ / P r \  1.4 dk 
. . . . .  = 0  

was used for the kinetic energy equation. Finally, the 
boundary condition of  the dissipation of kinetic 
energy was given by specifying g at the node next to 
the solid wall 

~:p = c;' ,4k~ 2 /~ )>  I I 5) 

where the subscript p indicates the location at the 
node next to the solid wall, yp is the distance between 
this node and the wall, and ~c is a constant, ~, = 0.4. 

Equations (1)-(7) are the governing equations of  
turbulent flow and heat transfer inside a helicoidal 
pipe. By setting the torsion equal to zero (2 = 0), the 
above equations reduce to the governing equations in 

a toroidal pipe. Patankar et al. [19] have derived the 
governing equations for developing turbulent flow in 
the toroidal pipe. Comparison indicates that the 
reduced equation in this study (,i = 0) is identical to 
Patankar 's governing equations, if one sets the d~/dq) 
term equal to zero in their study (O and ~b are the 
general variable and axial coordinate, respectively). 

The governing equations, equations (1)-(7), are 
nonlinear partial differential equations that have been 
solved by the simple algorithm (Patankar [20]). Four  
controlling parameters for the calculation are the axial 
pressure gradient, dp/ds,  dimensionless curvature 6, 
torsion )~ and Prandtl number Pr. The convergence 
criterion of  

~< 10 ~ (16) 
!i o~+ '  i! 

is applied for all equations, where • refers to u, v, w, 
p, 7", k and c. Subscripts i and j represent the arbitrary 
nodes, and superscript k represents the kth iteration. 
After the converged axial velocity has been obtained, 
the Reynolds number and the Dean number, the flow 
can be calculated by 

2pawb 
Re = - - -  (17) 

/6 

De = Re6 I~- (18) 

where the bulk velocity Wb is 

Wh = wr dr dO, (19) 

w Tr dr dO. (20) 
T b  - -  7[Wb ) I 

A computer  code was developed based on the above 
mentioned solution methodology. A grid refinement 
study was conducted in the present analysis to deter- 
mine an adequate grid distribution. Uniform grid dis- 
tributions (angular direction grids x radial direction 
grids) of  22 × 22, 30 x 30, 42 x 42, 50 x 50, 62 x 62 and 
70 x 70 were tested, Table 1 is a comparison of the 
predicted results for fully developed Nusselt numbers 
at different grid distributions. An axial pressure gradi- 
ent of  dp/ds/(pv2/a) = -2.106, curvature of  6 = 0.025, 
and Prandtl number of Pr = 0.7 were applied during 
the calculation. The table indicates that the 62 x 62 

Table 1. The predicted results with differ- 
ent grid arrangements 

L x M  Nu 

22 x 22 119.8 
30 x 30 114.4 
42 x 42 117.5 
50 x 50 119.9 
62 x 62 121.6 
70 x 70 121.8 
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Fig. 2. Comparison of predicted results with the experimental results (Pr = 0.7). 

grid arrangement ensures a satisfactory solution, and 
the results presented in this paper are based on the 
calculation of the 62 x 62 grid size distribution. In 
order to verify the accuracy of the computer code, 
the predicted results have been compared with the 
information in the open literature and Schmidt [5] for 
water. Figure 2 shows the comparison of the predicted 
results with the tested results of Mori and Nakayama 
[7] for air. The curvature of the helix was 6 = 0.025, 
and the calculation was based on Pr = 0.7. The figure 
indicates that the predicted results agree very well with 
the tested data. Figure 3 gives another comparison for 
water. In the figure, the open box indicates the test 
results from Schmidt [5], and the cross indicates the 
results from Rogers and Mayhew [3]. The solid line 
represents the results from the prediction of Petukhov 
and Popov [4], while the dot indicates the results from 
the present study. The figure demonstrates that the 
predicted results agree well with Rogers and Mayhew 
at a low Reynolds number range (Re < 20 000) and 
were close to the Schmidt results when the Reynolds 
number was larger than 20 000. 

3. RESULTS AND DISCUSSION 

Since the enhancement of heat transfer in a curved 
pipe with a finite pitch is strongly dependent on the 
behavior of the secondary flow in the cross-section, 
the temperature distribution and corresponding sec- 
ondary flow patterns will be discussed simultaneously. 
Figure 4 shows the effects of torsion on the fluid tem- 
perature and secondary flow patterns in a helicoidal 
pipe. During the calculation, R/a = 40 and the dimen- 
sionless axial pressure gradient, dp/ds/(pv2/a)= 
-2.106 , have been applied. The torsion, 2, changes 
from 0 to 0.5. The Reynolds numbers in the three 
cases are around 30 000, which ensures that the flow 
is in the turbulent region. Figure 4a illustrates the time 

averaged secondary velocity distribution in the cross- 
section of a toroidal pipe when ~ = O. Due to the 
unbalanced centrifugal force generated by the primary 
flow, the fluid flows outward in the center region of 
the pipe and returns to the innermost point along the 
solid wall. Since 2 = 0, the two vortices are symmetric 
to the centerline between the outermost points to the 
innermost point of the pipe. Figure 4b shows the tem- 
perature distribution for a fluid when Pr = 0.7 (air). 
Due to the secondary flow, the temperature contours 
with high values were pushed toward the outer wall 
region, as in laminar flow (Yang and Ebadian [17]). 
The temperature contours were symmetric to the cen- 
terline between the innermost point and the outermost 
point. Figure 4c indicates a very similar temperature 
distribution behavior as that in Fig. 4b for the fluid 
when Pr = 5.0 (water). However, the temperature in 
the Pr = 5.0 fluid was much more uniform than in air. 

Figures 4d-i exhibit the time averaged secondary 
velocity and temperature distributions in a helicoidal 
pipe with a finite coil pitch, while the torsion 2 is 0.1 
and 0.5. As torsion is applied, Fig. 4d, g shows that 
the two vortices of the secondary flow in both cases 
become symmetrical. The vortex in the top region is 
enlarged and the one in the bottom region has shrunk. 
The profile distortion is enhanced as torsion increases. 
Since torsion is a rotational force that will generate a 
rotational flow, when both centrifugal force and tor- 
sion are applied, this rotational flow will enlarge the 
tangential velocity in one vortex and reduce it in 
another. Figures 4e, 4f, 4h and 4i show the tem- 
perature distributions in both cases, indicating the 
temperature contours rotate clockwise and are 
distorted. The distortion and rotations of the tem- 
perature contours will increase as torsion increases. 

Table 2 shows the torsion effect on Nusselt numbers 
in a helicoidal pipe. During the calculation, R/a = 40, 
and the dimensionless axial pressure gradient, 
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Table 2. Effect of torsion on the heat transfer rate for 
Re = 3 x 106 

Pr = 0.7 Pr = 5.0 

)t ct Nu Nu/Nu~=o Nu Nu/Nua=o 

0 0 114.1 1.0 190.6 1.0 
0.1 17.8 ° 117.8 1.032 194.1 1.018 
0.2 34.9 ~" 120.1 1.053 197.0 1.034 
0.3 50.4 ~: 121.1 1.061 197.7 1.037 
0.5 76.3 ° 122.0 1.069 197.5 1.036 
0.7 95.4 ~' 122.5 1.074 196.2 1.029 
1.0 115.0 ° 123.4 1.082 192.8 1.012 

Table 3. Effect of torsion on the heat transfer behavior at 
different flow rates 

Re 

Pr = 0.7 Pr = 5.0 

2 = 0  2 = 0 . 3 2 = 1 . 0  2 = 0  ) ~ = 0 . 3 2 = 1 . 0  

2.104 88.0 90.1 90.8 133.3 135.5 132.0 
3 " 1 0  4 114.1 121.1  123.4 190.6 197.7 192.8 
5.104 151.6 175.4 180.3 285.6 314.8 305.2 

dp/ds/(pv2/a) = - 2 . 1 0 6  have been applied. The Reyn- 
olds n u m b e r  is a round  3' 1 0  6 , and  the tors ion  changed  
f rom 0 to 1, which, cor responding  to the angle, ct (as 
seen in Fig. 1), varied f rom 0 to 115 °. Fo r  air, Pr = 0.7, 
the Nusselt  n u m b e r  will be slightly increased with 
torsion.  When  tors ion increases f rom 0 to 0.5, the 
Nussel t  n u m b e r  increases a round  7%. As tors ion 
increases further,  the increase in the Nussel t  n u m b e r  
becomes much  slower. Fo r  water,  Pr = 5.0, the Nus-  
selt n u m b e r  increases as tors ion increases in the begin- 
ning. The Nussel t  n u m b e r  increases 3.7%, when the 
tors ion increases to 0.3, then the Nussel t  n u m b e r  
gradually decreases. Table  3 indicates the effect of  
tors ion on  the heat  t ransfer  behavior  at  different flow 
rates. At  a low rate, Re = 20 000, the tors ion effect is 
no t  significant for bo th  air  and  water. At  this flow 
rate. the Nussel t  n u m b e r  changes less than  3% as the 

tors ion varies f rom 0 to 1.0. However,  a t  a large flow 
rate, Re = 50 000, the Nussel t  n u m b e r  changes sig- 
nificantly, especially for air. Table  3 also shows the 
same behavior  as in Table  2 of  water. As tors ion 
increases, the Nussel t  n u m b e r  increases at  the begin- 
ning, and  then reduces. 

Figure 5 shows the compar i son  of  the tempera ture  
dis t r ibut ions  between the l aminar  flow and  turbulen t  
flow, with  bo th  cases having  the same Prandt l  n u m b e r  
and  torsion.  It can  be seen tha t  the cold fluid has  
penet ra ted  deeply in the center  region, and  divided 
the h igh tempera ture  con tours  into  two separated 
islands. In the tu rbu len t  flow region, this cold fluid 
pene t ra t ion  was minor .  There  are two reasons beh ind  
this phenomena .  First,  the rat io  of  secondary pr imary  
velocities of  the tu rbu len t  region is much  smaller than  
tha t  of  the l aminar  flow region. Second, the tu rbulen t  
thermal  diffusivity in tu rbu len t  is much  larger than  
tha t  in l aminar  flow. For  example, when Re = 30 000, 
the tu rbu len t  thermal  diffusivity is a r o u n d  40 times 
higher  than  tha t  of  l aminar  flow. Due  to the difference 
of  tempera ture  dis t r ibut ion,  the heat  t ransfer  behav ior  
of  tu rbu len t  flow is totally different f rom tha t  of  lami- 
nar  flow. For  example, when  Pr. 0.7, the Nussel t  will 
increase 6.1%, when  tors ion increases f rom zero to 
0.3 in tu rbu len t  region (Re = 30 000). However,  the 
Nussel t  n u m b e r  will average 8.0% with the same 
Prandt l  number ,  and  tors ion changes when  Re = 400. 

4. CONCLUSION 

Fully developed turbulen t  flow and  convective heat  
t ransfer  in a circular cross-section helicoidal pipe with 
finite pi tch is numerical ly studied in this paper.  The  
time averaged m o m e n t u m  and  energy equat ions,  as 
well as the k and  e equat ions,  have been derived in the 
helicoidal coordinate  system. The k-e model  is used to 
model  the tu rbulen t  kinetic energy and  its dissipat ion 
rate. The predicted heat  t ransfer  rates for b o t h  water  
and  air  compare  well with available experimental  test 
results. The results indicate tha t  tors ion will ro ta te  

L o m i n a r  Flow T u r b u l e n t  Flow 
Re = 5 0 0  Re = 5 0 , 0 0 0  
Fig. 5. Temperature distributions in laminar turbulent flows (Pr = 5, 2 = 0.1). 



2022 G. YANG and M. A. EBADIAN 

and distort the temperature contours  in the cross- 
section as in laminar flow. For  air, the Nusselt number  
will increase as torsion increases. However,  for water, 
the Nusselt number  will increase with torsion in the 
beginning, and then it will decrease. The results indi- 
cate that unlike that  of  laminar flow, the torsion effect 
on the heat transfer will decrease with the Prandtl  
number. The results also show that the effect of torsion 
will be enhanced by an increase in the fluid axial flow 

rate. 
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